MATRICES WITH ZERO TRACE

BY
R. C. THOMPSON*

ABSTRACT

Let M, (F) denote the algebra of n-square matrices with elements inafield F.
In this paper we show that if Me Mn(F) has zero trace then M = AB—BA
for certain 4, Be Mn(F), with A nilpotent and trace B = 0, apart from some
exceptional cases when n = 2 or 3. We also determine when M = MB—BM
for some B e M, (F).

Let F be a field of characteristic p, p zero or prime. Let M,(F) denote the
algebra of n-square matrices with elements in F. Let (4,B) =4B —~ BA denote
the commutator of matrices A, Be M,(F). It is well known that trace (4,B) =0.
In 1936, Shoda [2] proved for p=0 that if M e M,(F) has zero trace then
M = (4, B) within M,(F). In 1957, Albert and Muckenhaupt [1] removed the
restriction on p. It is of interest to ask whether in M = (4, B) it is possible to
choose 4,Be M,(F) so that trace A =traceB=0. If n=£0(mod p) it is trivial
to see that this is always possible. For let o = n”*trace 4, § = n~'trace B. Then
M=(A,B)=(A —al,,B—BI,) where I, is the n-square identity matrix. Here
A —oal, and B—pI, each have zero trace. However, this argument fails if
n =0 (mod p). It is still easy to see that we can always choose 4 to have trace
zero. For if trace B = 0 then M = (— B, A) and — B has zero trace. If trace B# 0,
lety = — (trace A)(trace B)~*. Then M = (4 + yB, B) and here trace (4 + yB) =0.
No simple argument of this kind can show that it is always possible to choose
both A and B to have zero trace, since we shall exhibit below an example where
this is impossible. We are now ready to state our main result.

THEOREM 1. Ifp#3let n>2 and if p=3 let n>3. Let Me M,(F) have
zero trace. Then A,Be M,(F) exist such that M = (A, B), A is nilpotent, and B
has zero trace.

In Theorems 2, 3, 4, we supply a discussion of the cases n =2 and n=p = 3.
In Theorem 5 we obtain some consequences of Theorem 1. In Theorem 6 we
determine when M =(M,B) within M, (F).

We first require a Lemma that extends somewhat a Lemma proved in [1].
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LeMMA. Let M =(m;;) € M,(F), where n = 2. Suppose

1) X ma=0, 0Sasn-1.
i=1
Let K =(k;)e M (F) where k;;=0if i#j+1 and k;,; ;=1 for 1<j<n.
Then Be M,(F) exists such that M = (K, B), with
n-1
2) traceB = — X (n—i)myyq ;.
i=1

Proof. Let B =(b;;) where b;; =0 for 1 <i<n. The elements in the top
row and in the first column of KB are all zero, and for a > 1, > 1, the element
in position (a, B) of KB is b,_; 3. In — BK the last column is a zero column,
and for B <n, the element in position (a, f) is —b, g4, . Thus in column  of
KB — BK, for f <n, we see new unknowns b; gi1,b; g41,°**»bap+1 that do
not appear in any column of KB — BK to the left of column . We may there-
fore choose B such that M — (KB — BK) has all columns zero, except perhaps
for column n. We now introduce some additional terminology. In an n-square
matrix let diagonal o denote the diagonal of positions (i,i + a—1),1 S i< n—a+1;
1£a<n. In KB — BK diagonal » has a single element, zero, and this is also
true of M. For 1 £a<n-—1, the sum down diagonal « in KB — BK is

n—a+l n—a
bi-—l,i+¢—1 - X bi,i+a = 0.
i=2 i=1

Hence the sum down diagonal ain M ~ (K, B)is zero, 1 < a < n. Since M —(K, B)
can have nonzero elements only in column n, we must have M — (K,B)=0.
The elements by, =0,b,,,+-+,b,, in B satisfy the equations:

myy = —by,,

Mgy =bi_g-1—by, 3sisn.
Hence
3 by = —(myy +myy + -+ myy),

for 2<i £ n. From (3) it is easy to get (2).

We now give the proof of Theorem 1. First observe that, given M = (m;;) € M(F)
with trace M =0, it suffices to prove Theorem 1 for some similarity transform
SMS™* by a nonsingular element S of M,(F). Next observe that if
D =diag(d,,ds,-,d,) € M,(F) and is nonsingular, then the second diagonal of
D™ MD is di*my,d,,d; " mysds, -+, d;tym,_; ,d,. From this it follows that for
appropriate nonzero dy,d,,--,d,€F, we can in D ~MD replace the nonzero
elements on the second diagonal of M with any given nonzero values from F.
- Moreover, the positions in M which are zero still are zero in D™*MD.

We let C(p(4)) denote the companion matrix of polynomial p(1). We take
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our companion matrices so that (when degree p(4) > 1) the stripe of ones is
on the second diagonal of C(p(4)).
Now let

C)] M = C(py(D) + C(p2(D) + -+ + C(p(D) € M(F),
where 1 denotes direct sum. We arrange matters so that
&) Pi+1(4) divides p(4), 1Sisr,

(possibly r = 1). Let d be the number of ones on the second diagonal of M.

We now suppose F # GF(2), the two element field. A separate proof will be
given later when F = GF(2).

We break our discussion into cases. First let degree p;(A)=4 or degree
pi(A)=3, r>1, degree p,(4)>1. Then d = 3. Select yeF such that y #0,
y # — (d—3). This is possible if F has at least three elements. Set x = —y — (d—3).
Then x # 0. Find a diagonal matrix D e M,(F) so that the nonzero elements on
the second diagonal of D ~'MD are 1, x, y together with d—3 ones. Let

0 u
D™'MD = [ ] ;
v M, ’

where M, eM,_(F); u=(1,0,0,---,0) is a row (n—1)-tuple; v is a column
(n—1)-tuple for which the transpose, v”, has the form vT=(0,v,,04,---,0,).
Owing to the choice of x and y, the sum down the second diagonal of M, is
zero. Hence, by the Lemma, M, =(K,, B,) for a certain (n— 1)-square K, given
by the lemma and for some B, e M,_,(F). Set

(6) A= [0 0 ], B = [—tr31 uy }.

Here u, =(0,-1,0,0,--:,0), vy = (3,04, 0,,0). Then —u, K, =u,Kv, =v,
and hence D"'*MD = (4, B). Moreover A is nilpotent and trace B=0.

We now have to examine the following cases: (i) degree p(1)=3,
degree p,(i)=--- =degreep, () =1 (perhaps r=1); (ii) degree p,(1)=2;
(iit) degree p,(1)=1.

Case (i). If n £ 0(mod p), set x =0. If n =0(mod p) but p# 3, let x be the
solution in F of 3x =2a,, where p,(1) =43 —a342 —-a,4—a,. Defer for a
moment the possibility p =3, n= 0(mod 3). Let

-1 0 0
A= 01 0 +I,_5.
-x 0 1
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Then the sum down the second diagonal of AMA™! is zero. We can apply the
lemma to AMA™! to get AMA™'=(K,B). If n£0 (mod p) we also have
AMA™!'=(K,B - BI,). If we put § = n"* trace B then we have K nilpotent and
trace(B— BI,)=0. If n=0 (modp) then the formula (2) together with the
choice of x shows trace B =0. This finishes case (i), except when p=3 and
n = 0(mod 3).

When p =3 and n = 0(mod 3), the conditions in the theorem show that n > 3.
Moreover (5) and degree p,(1)=1 show that M = C(p(4)) + yI,-3 for some
ye F. But then M is similar to M; =9I, +C(p(4)) + yI,—-4. Let D=(1} + (- 1)
4+ I,_,. Then the sum down the second diagonal of D-*M (D is zero. If we apply
the Lemma to D™'M,D we get D™'M,D=(K,B). The formula (2) for
trace B (use n = 0 in F) shows that trace B = 0. This completes case (i).

To handle the case in which degree py(1) =2, we let

Tm=[“1ﬁl]+ “2B2]+_“+[ampm].
71 9 Y2 0, Yim Om

T,, is 2m-square. We permute the rows and columns of T,, in the same way — this
is a similarity transformation P~'T,P of T, by a permutation matrix P. We
take the rows (and columns) of T,, in the order 1,3,5,---,2m—1,2,4,6,---,2m.
The result of this similarity is (in partitioned form)

diag(ai,az,---,a,,,), diag(ﬁlsﬁb""ﬁm)l .

T,=P 'T,P = [ ‘ _
dlag(?b?b'"”ym)9 dlag(ébéh "':ém)

We now consider case (ii). If degree p,(1) = degree p,(1) =2, we may find a
diagonal D such that the second diagonal of D™ MD sums to zero. But
D *MD =T, or D"'MD = T, -} (y) according as n is even or odd. So we find
a nonsingular Qe M,(F) such that Q"'MQ =T, or Q"'MQ =T, +(7), as n
is even or odd. By theLemma, Q" *MQ = (K, B). Here (2) and m > 1 show that
traceB=0. If degreep,(A)=1 then p,())=:--=pA)=4-y, so p(d)=
(A —79)(A —6),forcertainy, 6 € F. But then M is similar to My =(81; +-7I,-1)+E,;
where E,; is n-square with all entries zero except for a single one at the (n,1)-
position. Since n > 2, the Lemma shows M;=(K, B) where, by (2), trace B=0
This completes case (ii).

In case (iii), M is diagonal and by the Lemma M =(K,B) with traceB=0.
This completes the proof of Theorem 1 when F # GF(2).

Now assume F = GF(2). Let M be given by (4) and (5). First suppose degree
pi(A) = 3. Let M =(m;;) and consider first the case in which the number of
ones on the second diagonal of M is even. Let

=1
d=1 Miyq,i(n—1).
i=1
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Let s = degreep,(4), so that C(p,(4)) is s-square. Let E; ;_, be s-square with
all entries zero except for a single one at position (s,s—2). Let A=I;+ 0E, ,_,.
Then

M’ = AC(p,(ADA™! + C(p(A) + -+ + C(p(A)

still has an even number of ones on the second diagonal. By the Lemma
M’ =(K,B)and by (2),trace B=30+(n—s+ 1)0 + (n—s+2)6=2(n—5+2)6=0.
Now let the number of ones on the second diagonal of M be odd. Let

) M=[0u]
v M,

where u =(1,0,0,---,0), v7=(0,v3,---,0,), and M, has an even number of
ones on the second diagonal. Then, by the Lemma, M; =(K,, B,). Define 4,B
by (6). Then M =(4, B), A is nilpotent, trace B =0.

We may now assume that degree p,(4) is two or one. If degree p,(1) is one,
then M is diagonal and the Lemma applies to M to give the result. So let degree
p((4) be two. Then py(4) is one of 42,42+ 4,42+ 1,2+ A+ 1. If p,(2) = 2,
then if there are an even number of ones on the second diagonal of M the Lemma
immediately gives the result. If there are an odd number of ones on the second
diagonal then M is given by (7) with v = 0. Then, by the Lemma, M, =(K,, B,).
(M, has at least two rows since M has at least three rows.) Let 4, B be given by
(6), with v, =0. Then M = (4, B) with A nilpotent and trace B=0. If p,(1)
= A%+ A then (because of (5)), M is diagonable and the result is at hand. If
p(M)=A%+1 then M is similar to

10 . 10 X . 10 :
Ml = [ } + [ J + 3+ { } + In—2s9
11 11 11

l l .

If s> 1, then M, has the form M, =T, or M, =T, 4 (1), according as n is
even or odd, with f;=--=8,=0. But then there exists @ such that
Q7'M Q=T, or Q"'MQ =T, + (1). By the Lemma, (2) and m>1, Q"'M,0Q
= (K, B) with trace B=10. If s = 1, M is similar to I, + E,;, and by the Lemma,
I,+ E,, =(K,B), with trace B=0. We now have to consider the case
pi(A) =A%+ 1+ 1. Then, as p,(4) is irreducible, p,(1) = p,(A) = --- = p,(4) and
trace M =r. Thus r is even. But then the sum down the second diagonal of M
is zero. Moreover M = T,,. So M is similar to T, and by the Lemma T, =(K, B)
with trace B=0. This completes the proof of Theorem 1.
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THEOREM 2. Letp=3.Let M e M;(F), withtrace M =0, Then:(i) M =(A,B)
within Ms(F) with A nilpotent and trace B=0 if and only if the characteristic
polynomial p(A) of M has the form

® p(A)=23—-x%.-48, x,8,€F;

(ii) M = (A, B) within M3(F) with A nilpotent; (iii)) M = (A, B) within My(F)
with trace A =trace B=0.

Proof. Suppose M = (A, B) within M;(F) with A4 nilpotent and trace B=0.
After a similarity transformation of M = (4,B) by a nonsingular element of
M,(F), we may assume A is one of the following three matrices:

000 000
&) A=0; A= 000 ); 4= 1 00
010 010

If A=0 then M =0 and the characteristic polynomial of M has the form (8).
From M = (A, B) we get M = (4, B — fI;) and trace (B — pI;) = trace B for any
BeF.Soin M = (4, B) we may assume that the (3, 3) element of B is zero. Hence
let

byy by by
(10) B = byy —byy by
by, bs;; O

If we compute the characteristic polynomial of (4, B) where A4 is the second
matrix (9) and B is given by (10), we get that the coefficient of 4 is —b3,. If we
compute the characteristic polyniomal of (4, B) where A is the third matrix (9)
and B is given by (10), we get (using 2= —1 in F) that the coefficient of A is
~(by, + b,3)*. Hence the characteristic polynomial of (4, B) has the form (8).

Suppose now the characteristic polynomial p(1) of M is given by (8). If M
is nonderogatory then M is similar to C(p(1)). But C(p(1)) = (U, V) where

0 0O 0 —x -1
U=|-100],v= 5 x* x
x 10 —6x —x> —x?

Here U is nilpotent and V has trace zero. Suppose M is derogatory. Then p(4)
must have a repeated root. Let 7,7,a be the roots of p(A). Then y +y+a=0
and 7y + y + y = O (since F has characteristic 3). Thus a = y. Hence p(4) = (=9
As M is derogatory the minimal polynomial of M must be 1—y or (1—7)? and,
of course, the minimal polynomial has coefficients in F. Thus yeF and M is
similar within Ms(F) to
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y 0 O
(1) 0 y O
g 0 vy

where ¢ is 0 or 1. But by the Lemma, for M given by (11), M = (K,B) where,
using (2), trace B =0. This proves (i).

To prove (ii), first let M be nonderogatory, similar to C(g(4)) for some poly-
nomial g(1). Choose diagonal D such that the second diagonal of D™'C(g(A))D
sums to zero. Then by the Lemma, D ~! C(g(4))D=(K, B) where K is nilpotent.
If M is derogatory then the argument given above shows M is similar within
M (F) to the matrix (11). Hence always M = (4, B) where A is nilpotent. And
in fact we have proved that if M is derogatory then M = (A4, B) with A nilpotent
and trace B = 0, within M;(F). To prove (iii) therefore we may assume M =C(g(A).
Let g(A)=A3 —ad — B. Let now U = diag(0,1, —1),

0 -1 0
V= 0o 0 -1
- a« O

Then M = (U, V) and trace U =traceV =0. (Use 2 = —1 in F.) This completes
the proof of Theorem 2.

THEOREM 3. Let p# 2 and let M € M,(F) with traceM =0. (i) If M = (4, B)
within M,(F) with A nilpotent then the eigenvalues of M are in F. If the eigen-
values of M are in F then M = (A, B) within M,(F) with A nilpotent and trace
B=0. (i) M = (4, B) within M,(F) with trace A = trace B = 0 can always
be achieved.

THEOREM 4. Let p=2 and let M € M,(F) with trace M =0. (i) M = (4,B)
within M,(F) with A nilpotent if and only if the eigenvalues of M are in F.
(ii) If M =(A,B) within M,(F) with trace A =traceB=0 then M is scalar.
If M is scalar then M = (A, B) within M,(F) with both A, B nilpotent. (iii)
M = (A, B) within M,(F) with trace A =0 can always be achieved.

Proofs. Let M =(4,B) with 4 nilpotent. Either A=0(and then M =0) or, after
a similarity transformation by a nonsingular element of M,(F), we may assume

00
A= [ ] .
10
Let B=(bij)1§i,j§2' Then

(A,B)=[ =b2 0 ]
bll

—bZZ b12
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Hence the eigenvalues of (4, B) are in F . Conversely if the eigenvalues of M = (m;;)
arein F, after a similarity transformation we may assume m,, = 0. Then M =(4,B)

where A = E,; and
[ My —Myy ]
B =
0 0

If p#2, we also have M =(4,B—2"" m,,I,) and trace(B—2"! m,,I,) =0.
This proves part (i) of each theorem.

Let p=2 and let M =(A,B) with traced =trace B=0. Then also
M =(4 ~ ol ,B— fI) with a equal to the (2,2) element of A, and B equal to
the (2,2) element of B, and trace(A4 — al) = trace(B — pI)=0. Soin M =(A4,B)
we may assume the main diagonal is zero. Then

([a(:l a: ] [ b(z)lb:])

is scalar., On the other hand if M = mI,, then

0 0 0 m
L (PR P )
1 0 0 0
is the commutator of two nilpotent matrices. This proves Theorem 4(ii).

To prove Theorem 4(iii) we may assume M is not scalar. In Theorem 3(ii)
a nonzero M with trace zero cannot be scalar. So to complete these proofs let
M = C(4* — a). Then M =(4,B) where

4= [0 —1]’ B=[1 0].
a 0 0 0
If p#2 then also M = (4,B — 27'I,) and trace (B —2™'I,) = 0. This finishes
the proofs of Theorems 3 and 4.

THEOREM 5. Let Me M, (F), n> 2, with trace M=0. Then M is an ar-
bitrary word in commutators within M,(F).

Thus, for example, M = ((A,,A4,),((45,4,), 45)) within M,(F) if and only if
trace M = 0.

We now require additional terminology. Let L be the algebraic closure of
field F. The invariant factors of M e M (F) are by definition the nonconstant
polynomials on the main diagonal of the Smith canonical form of the polynomial
matrix AI — M. Over F, each invariant factor of M can be split into a product
of powers of irreducible polynomials over F. We call these powers of irreducible
polynomials over F the elementary divisors of M over F. Over L, each elemen-
tary divisor has the form (1 — Ao)™.
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THEOREM 6. Let Me M (F). Then Be M, (F) exists such that M =(M, B)
if and only if each elementary divisor (A — A5)" of M over L has m = 0(mod p)
whenever A, # 0. If this condition is satisfied then it is always possible to choose
B such that trace B=0, except in one situation: if p=2 and if each elementary
divisor of M over L has even degree, then for all choices of B we have trace
B=n/2.

An equivalent form of the condition of Theorem 6 is that each elementary
divisor of M over F not of the form A™ be a polynomial over F in A”.

Proof. Suppose M =(M,B). After a similarity transformation by a non-
singular element of M, (L), we may suppose M =M, 4 --- ;1 M,, where M, is
m;-square, of the form M;=(4) if m;=1, or

Mi = }'iIm; + C(lmi)

if m;> 1. (Jordan canonical form.) Here the A; are not necessarily different.
Partition B=(B;;) 1 £1i,j S r, where B; is m;-square. Then M = (M, B) implies
M,=(M,;,B;), 1 £i=r. Hence trace M; = 0. This implies that m; = 0(mod p)
whenever ; # 0. Hence the condition of Theorem 6 is satisfied. Suppose now
that p = 2 and that each m; is even. Fix i, and let B;; = (b,g). Then M; = (M, By)
yields by4y 441 — b =1, for 1 Sa < m;. Hence b,,q 441 =+ by, and hence
trace B, = m;(m; — 1)/2 + m;b;; = m;/2 because m; =0 in L. Therefore trace
B=(m;+ - +m)2=n/2.

To complete the proof of Theorem 6, we suppose M € M, (F) satisfies the con-
dition of Theorem 6. We have to find Be M,(F) such that M =(M, B), with
trace B =0, apart from the exceptional case. Let ¢(1)° be an elementary divisor
of M over F, with ¢(1)£ 4. Let A, be a root of ¢(4) of multiplicity v, where
o€ L. Then (A — Ay)” is an elementary divisor of M over L. Hence either
v=0(mod p) or e=0(modp). In either event ¢(1)° must be a polynomial in
AP, Now let g(A) = —ag—ad— - —au_ ™'+ 1™ be a polynomial in A?:
a; =0 if j=0(modp), and m = 0(mod p). Let B, =diag(1,2,3,---,m). Then
C(g(A) = (C(g(A), By), since (j + 1)a; =0 = a;if j # 0(mod p), and (j + Da; =a;
if j = 0(mod p). Moreayer, for odd p, trace B=m(m + 1)/2=0 becuse m=0
(mod p). Next note that C(A") = (C(A™), B, — al,,) for any m and any aeF.
If p is odd and m = 0(mod p), put « =0. Then trace B, =0. If m = 0(mod p),
o may be chosen from F so that trace(B, — al,,) achieves any desired value in
F. By taking direct sums, we can get M = (M, B) within M, (F), with trace B=0
in all cases but the indicated one. This completes the proof of Theorem 6.

THEOREM 7. Let MeM(F),n > 2,(n>3 if p=3) with trace M = 0,
Then
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Jor certain A,B,X € M, (F) with traceX =0, A nilpotent, and (for p+#?2),
traceC =0,

Proof. By Theorem 1, M =(A4,X) with A nilpotent and trace X =0. By
Theorem 6, A = (4,C), with traceC =0 for p# 2. By iteration we get (12).
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