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ABSTRACT 

Let Mn(F ) denote the algebra of n-square matrices with elements in a field F. 
In this paper we show that if Me  Mn(F) has zero trace then M = AB--BA 
for certain A, Be Mn(F), with A nilpotent and trace B = 0, apart from some 
exceptional cases when n = 2 or 3. We also determine when M = MB--BM 
for some B e M n (F). 

Let F be a field of  characteristic p ,  p zero or prime. Let Ms(F) denote the 

algebra of  n-square matrices with elements in F .  Let (A,B) = AB - BA denote 

the commutator  of  matrices A, B e Ms(F). I t  is well known that trace (A, B) = 0. 

In  1936, Shoda I2] proved for p = 0 that if  M e M~(F) has zero trace then 

M = (A,B) within Ms(F). In I957, Albert and Muckenhaupt  1'1] removed the 

restriction on p .  I t  is of  interest to ask whether in M = (A,B) it is possible to 

choose A, BeM,(F)  so that trace A = t r a c e B = 0 .  I f  n ~ 0 ( m o d p )  it is trivial 

to see that  this is always possible. For  let ~ = n - l t r a c e A , / ~  = n - l t r a c e B .  Then 

M = ( A , B ) = ( A -  ~I,,B-~I~) where In is the n-square identity matrix. Here 
A -  ~I,  and B - ~ I ,  each have zero trace. However,  this argument fails if 
n = 0 (mod p) .  I t  is still easy to see that we can always choose A to have trace 
zero. For  if  trace B = 0 then M = ( -  B, A) and - B has zero trace. I f  trace B # 0, 

let ~ = - (trace A)(trace B) -  1. Then M = (A + ~B, B) and here trace (A + ~B) = 0. 
No  simple argument of  this kind can show that it is always possible to choose 
both A and B to have zero trace, since we shall exhibit below an example where 

this is impossible. We are now ready to state our main result. 

TI-1EOI~M 1. I f  p ~ 3 let n > 2 and if  p = 3 let n > 3. Let M e Mn(F) have 
zero trace. Then A, BeMn(F) exist such that M = (A,B), A is nilpotent, and B 
has zero trace. 

In Theorems 2, 3, 4, we supply a discussion of  the cases n = 2 and n = p = 3. 

In Theorem 5 we obtain some consequences of  Theorem 1. In Theorem 6 we 

determine when M = (M,B) within Ms(F). 
We first require a Lemma that extends somewhat a Lemma proved in 1'1]. 
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34 R.C. THOMPSON 

L ~ . ~ .  Let M = (mti) e M,(F) ,  where n > 2. Suppose 

(1) ~E m~j+~=0 ,  0 < 0 c < n - 1 .  
i = l  

[March 

Let K = ( k , j ) e M . ( F )  where k i~=0  i f  i v ~ j +  l and k j + l d = l  for  l < j < n .  
Then B e M . ( F )  exists such that M = (K,B) ,  with 

n - 1  

(2) traceB = - ~ (n - i )ml+t ,  i. 
i = 1  

Proof. Let B = (bij) where hi1 = 0 for 1 < i < n. The elements in the top 
row and in the first column of KB are all zero, and for 0t > 1, fi > 1, the element 

in position (a, fi) of  KB is b._ 1,#. In - BK the last column is a zero column, 
and for ~ < n, the element in position (0t,~) is -b=,# +1. Thus in column p of  

K B - B K ,  for f l < n ,  we see new unknowns b~,p+x,b2,p+l,"',b.,#+l that do 
not appear in any column of  KB - BK to the left of  column ft. We may there- 
fore choose B such that M -  ( K B -  BK) has all columns zero, except perhaps 
for column n. We now introduce some additional terminology. In an n-square 
matrix let diagonal ~t denote the diagonal of  positions (i, i + ~ - 1), 1 < i < n - a + 1; 
1 < a < n. In KB - BK diagonal n has a single element, zero, and this is also 
true of  M.  For  1 < a < n -  1, the sum down diagonal 0t in KB - BK is 

n - ~ t + l  

b~_l,i+~_ 1 - ~ bi,~+~ = 0. 
i = 2  i = 1  

Hence the sum down diagonal 0~ in M - (K, B) is zero, 1 < 0c < n. Since M -  (K, B) 
can have nonzero elements only in column n,  we must have M -  ( K , B ) =  O. 
The elements bl l  =O, b22,...,b., in B satisfy the equations: 

m 2 1  = - b 2 2  , 

mt,~-t = b i - l , t - i  - bn, 3 < i < n. 
Hence 

(3) bit = - (m21 -F m32 -F "'" q- ml,~_x), 

for 2 < i < n. From (3) it is easy to get (2). 

We now give the proof  of  Theorem 1. First observe that,  given M = (mr j) e M.(F) 
with trace M = 0, it suffices to prove Theorem 1 for some similarity transform 

S M S  -~ by a nonsingular element S of  M.(F).  Next observe that if 

D =diag(dl,d2, . . . ,d .)~ M.(F) and is nonsingular, then the second diagonal of  

D-XMD is d'~lm:2d2,d21m23d3,...,d~_tlm._l,.d.. From this it follows that for 
appropriate nonzero dx, d2, ...,d~ o F ,  we can in D-1MD replace the nonzero 
elements on the second diagonal of  M with any given nonzero values from F .  
Moreover, the positions in M which are zero still are zero in D-1MD.  

We let C(p(2)) denote the companion matrix of  polynomial  p(2). We take 
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our companion matrices so that (when degree p(2) > 1) the stripe of ones is 
on the second diagonal of C(p(2)). 

Now let 

(4) M = C(pl(X)) Jr C(p2(~.)) J r ' "  Jr C(Pr(~.)) E Mn(F), 

where Jr denotes direct sum. We arrange matters so that 

(5) Pt+a(2) divides p~(2), 1 < i _~ r ,  

(possibly r = 1). Let d be the number of ones on the second diagonal of M.  
We now suppose F # GF(2), the two element field. A separate proof will be 

given later when F = GF(2). 
We break our discussion into cases. First let degree p1(2)> 4 or degree 

px(2) = 3, r > 1, degree p2(2) > 1. Then d _~ 3. Select y e F such that y # 0, 
y # - ( d -  3). This is possible i fF  has at least three elements. Set x = - y - ( d -  3). 
Then x # 0. Find a diagonal matrix D ~ M,(F) so that the nonzero elements on 
the second diagonal of D-1MD are 1, x ,  y together with d - 3  ones. Let 

D - t M D  = 
v M 1 

where MteM,_I (F) ;  u =(1 ,0 ,0 , . . . ,0 )  is a row (n-1)- tuple;  v is a column 
(n-1)- tuple  for which the transpose, v r, has the form vr=(O, v3,v,,...,v,). 
Owing to the choice of x and y ,  the sum down the second diagonal of M1 is 
zero. Hence, by the I_emma, M t = (K1,B1) for a certain (n-1)-square Kt  given 
by the lemma and for some B1 e M,_I(F). Set 

(6) A =  [ 0 0 ] ,  B =  [ - t r B t  ul ] .  

0 K 1 v I B 1 

Here ut = (0, - 1 , 0 , 0 ,  . . . ,0), v r = (v3,v,, ...,v~,O). Then - u t K  1 = U , K l V  1 = v,  

and hence D-IMD = (A,B). Moreover A is nilpotent and trace B = 0. 
We now have to examine the following cases: (i) degree p1(2)=3 ,  

degree p2(2) . . . . .  degreep , (~)=l  (perhaps r = l ) ;  (ii) degree pt(~.)=2; 
(iii) degree p1(2)= 1. 

Case (i). I f  n • 0(modp) ,  set x = 0. If  n -- 0(modp)  but p # 3, let x be the 
solution in F of 3x = 2a2, where p t (~)= 2 a - a322  - a 2 2 -  a l .  Defer for a 
moment the possibility p = 3, n - 0(mod3). Let 

- 1  0 0 

A =  0 1 0 Jr I , - 3 .  

- x  0 1 
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Then the sum down the second diagonal of AMA -1 is zero. We can apply the 
lemma to AMA -1 to get AMA - x = ( K , B ) .  If  n ~ 0 (mod p) we also have 
AMA- 1 = (K, B - flI~). I f  we put fl = n- 1 trace B then we have K nilpotent and 

trace (B - ill,,) = 0 .  I f  n = 0 (modp)  then the formula (2) together with the 
choice of x shows trace B = 0. This finishes case (i), except when p = 3 and 
n = 0(mod3).  

When p = 3 and n = 0(rood3) ,  the conditions in the theorem show that n > 3. 

Moreover (5) and degree p2(2)=  1 show that M = C(pl(2))4-~1n-3 for some 

e F .  But then M is similar to M1 = ylx 4- C(pt(;O) -[- ~I~-4. Let D = (1) 4- ( -  1) 
4- I~-2• Then the sum down the second diagonal of D-1M1D is zero. If  we apply 
the Lemma to D-1M1D we get D-1M1D=(K,B). The formula (2) for 

trace B (use n = 0 in F) shows that trace B = 0. This completes case (i). 
To handle the case in which degree p1(2)= 2, we let 

~)1 61 ~2 62 ?m 6m 

T,  is 2m-square. We permute the rows and columns of  Tm in the same way - -  this 
is a similarity transformation p-1TmP of  T,, by a permutation matrix P .  We 
take the rows (and columns) of Tm i n t h e  order 1,3,5, . . . , 2 m - 1 , 2 , 4 ,  6, . . . ,2m. 

The result of  this similarity is (in partitioned form) 

[ diag(~q,ct2, "",~tm) , diag(fll,fl2, "",flm) 1 
T" = P-ITmP = diag(~'l,T2,'",Tm), diag(c51,~52, "",~m) 

We now consider case (ii). If  degree Pl0~) = degreep2(2) = 2, we may find a 
diagonal D such that the second diagonal of  D - M D  sums to zero. But 
D-iMD =Tm or D-1MD = T~ 4- (7) according as n is even or odd. So we find 
a nonsingular QeMn(F) such that Q-tMQ = T" or Q-1MQ = 7"-[-(7), as n 
is even or odd. By the Lemma, Q- 1MQ = (K, B). Here (2) and m > 1 show that 

t r a c e B = 0 .  If  degreep2(2)= 1 then p2(2) . . . . .  p,(~)=2-~,, so p1(2)= 

( 2  - 7) (2 - &), for certain ~, 6 e F .  But then M is similar to M1 = (611 4- ~I~_ l) + E~I 
where E~t is n-square with all entries zero except for a single one at the (n, 1)- 
position• Since n > 2, the Lemma shows MI=(K,B) where, by (2), trace B = 0 

This completes case (ii). 
In case (iii), M is diagonal and by theLemma M=(K,B) with traceB = 0 .  

This completes the proof  of  Theorem 1 when F # GF(2)• 
Now assume F = GF(2). Let M be given by (4) and (5). First suppose degree 

p1(2) _-> 3. Let M = (m~j) and consider first the case in which the number of  

ones on the second diagonal of M is even. Let 

n--1 

6 = ~, mi+l,i(n-i). 
i=1 
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Let s = degreepi(2), so that C(pl(2)) is s-square. Let E,,s-2 be s-square with 
all entries zero except for a single one at position (s,s-2). Let A = Is + 6Es,~_2. 
Then 

M'  = AC(pl(2))A -1 4- C(p2(2)) 4-.. .  4- C(pr(2)) 

still has an even number of ones on the second diagonal. By the L e m m a  
M'  = (K,B) and by (2), traceB = 6 + (n - s + 1)6 + (n-s+2)6=2(n-s+2)6=O, 
Now let the number of ones on the second diagonal of  M be odd. Let 

u 1 v M l 

where u = ( 1 , 0 , 0 , . . . , 0 ) ,  vr=(o, va,...,v,), and M1 has an even number of 
ones on the second diagonal. Then, by the Lemma, M1 = (KI,BO. Define A,B 
by (6). Then M = (A, B), A is nilpotent, trace B = 0. 

We may now assume that degree pl(2) is two or one. If  degree p1(2) is one, 
then M is diagonal and the Lemma applies to M to give the result. So let degree 
pl(2) be two. Then pl(2) is one of 2 2, 2 2 + 2 ,2  2 + 1, 2 2 + 2 + 1. I f  pl(2) = 2 2, 
then if there are an even number of ones on the second diagonal of M the Lemma 
immediately gives the result. I f  there are an odd number of  ones on the second 

diagonal then M is given by (7) with v = 0. Then, by the Lemma, M~ =(K1,B1).  
(M1 has at least two rows since M has at least three rows.) Let A, B be given by 

(6), with Vl = 0. Then M = (A,B) with A nilpotent and traceB = 0. If pl(2) 
= 2 2 + 2 then (because of (5)), M is diagonable and the result is at hand. If  
Pl(2) = 2 2 + 1 then M is similar to 

M~ = [ 1 0 I 4- I 1 0 I 4-'"4- [ 1 0 ] 4- I n - 2 " ' l  1 1 1 1 1 

where there are s copies of  

1 0 

I1 1 
If  s > 1, then MI has the form Ma = Tm or M~ = T,, 4- (1), according as n is 
even or odd, with fll . . . . .  f l , , = 0 .  But then there exists Q such that 

Q-1MIQ = T,. or Q-1MQ = T" 4- (1). By the Lemma, (2) and m > 1, Q-1M1Q 
= (K,B) with trace B = 0. I f s  = 1,M is similar to I .  + E.1, and by the Lemma, 
In+E,I = ( K , B ) ,  with trace B = 0 .  We now have to consider the case 
pi(2) = 2 2 + 2 + 1. Then, as pl(2) is irreducible, pa(2) = p2(2) . . . . .  pr(2) and 
t raceM = r .  Thus r is even. But then the sum down the second diagonal of  M 

is zero. Moreover M = T~. So M is similar to T" and by the Lemma T" = (K, B) 
with trace B = 0. This completes the proof  of  Theorem 1. 
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THEOREM 2. Let p = 3. Let M e Ma(F), with trace M = O. Then: (i) M = (A,B) 
within Ma(F) with A nilpotent and trace B = 0 i f  and only i f  the characteristic 
polynomial p(4) of M has the form 

(8) p ( 4 ) = 2 a - x 2 2 - 3 ,  x,t~,eF; 

(ii) M = (A,B) within Ma(F) with A nilpotent; (iii) M = (A,B) within Ma(F) 
with trace A = trace B = O. 

Proof. Suppose M = (A, B) within Ma(F) with A nilpotent and trace B = 0. 
After a similarity transformation of M = (A,B) by a nonsingular dement of 
M3(F), we may assume A is one of the following three matrices: 

(9) A = 0 ;  A =  

0 0 0 

0 0 0 

0 1 0 

; A =  

0 0 0 

1 0 0 

0 1 0 

If  A = 0 then M = 0 and the characteristic polynomial of M has the form (8). 
From M = (A, B) we get M = (A, B -/~I3) and trace (B -/~I3) = trace B for any 
fl ~ F .  So in M = (A, B) we may assume that the (3, 3) element of B is zero. Hence 
let 

b~j b12 b13 

(10) B -- b2t - b i t  b2a 

b31 ba2 0 

If  we compute the characteristic polynomial of (A,B) where A is the second 
matrix (9) and B is given by (10), we get that the coefficient of 4 is -b~3.  If  we 
compute the characteristic polyniomal of (A, B) where A is the third matrix (9) 
and B is given by (10), we get (using 2 = - 1  in F) that the coefficient of ~. is 
--(b12 + b23) 2 . Hence the characteristic polynomial of (A,B) has the form (8). 

Suppose now the characteristic polynomial p(2) of M is given by (8). I f  M 
is nonderogatory then M is similar to C(p(4)). But C(p(4))= (U, V) where 

U = 

0 0 

- 1 0  

x 1 

0 

0 , V =  

0 

0 - x  - 1  

6 x 2 x 

-t~x - x  a - x  z 

Here U is nilpotent and V has trace zero. Suppose M is derogatory. Then p(~) 
must have a repeated root. Let y, y, ~ be the roots of p(2). Then y + y + 0~ = 0 
and y + y + y = 0 (since F has characteristic 3). Thus ~ = y. Hence p(4) = (4 -7 )  3. 
As M is derogatory the minimal polynomial of M must be 2 - y  or (4 -7 )  2 and, 
of course, the minimal polynomial has coetticients in F .  Thus y ~ F and M is 

similar within Ma(F) to 
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(11) 

? 0 0 

0 ? 0 

s 0 ? 

where 8 is 0 or 1. But by the Lemma, for M given by (11), M = (K,B) where, 
using (2), traceB = 0. This proves (i). 

To prove (ii), first let M be nonderogatory, similar to C(g(2)) for some poly- 
nomial g(2). Choose diagonal D such that the second diagonal of D-1C(g(2))D 
sums to zero. Then by the Lemma, D - t C ( g ( 2 ) ) D = ( K , B )  where K is nilpotent. 
I f  M is derogatory then the argument given above shows M is similar within 
M3(F) to the matrix (11). Hence always M = (A,B)  where A is nilpotent. And 
in fact we have proved that if M is derogatory then M = (A, B) with A nilpotent 
and trace B = 0, within M3(F). To prove (iii) therefore we may assume M = C(g(2). 
Let g(2) = 23 - ~2 - ~. Let now U = diag(0,1, - 1), 

V = 

0 - 1  0 

0 0 - 1  

-/~ ~ 0 

Then M = (U, V) and trace U = trace V = 0. (Use 2 = - 1 in F.) This completes 
the proof of Theorem 2. 

THEOREM 3. Let p # 2 and let M e  M2(F) with trace M = O. (i) I f  M = (A,B)  

within M2(F) with A nilpotent then the eigenvalues of  M are in F .  I f  the eigen- 
values o f  M are in F then M = (A,B)  within M2(F) with A nilpotent and trace 
B = 0 . ( i i )  M = ( A , B )  within M2(F ) with trace A = trace B = O can always 
be achieved. 

THEOREM 4. Let p = 2 and let M e M2(F) with trace M = O. (i) M = (A,B) 
within M2(F) with A nilpotent i f  and only i f  the eigenvalues of  M are in F .  
(ii) I f  M = ( A , B )  within M2(F) with traceA = traceB = 0 then M is scalar. 
I f  M is scalar then M = (A,B)  within M2(F) with both A, B nilpotent. (iii) 
M = (A,B)  within M2(F ) with trace A = 0 can always be achieved. 

Proofs. Let M = (A, B) with A nilpotent. Either A = 0 (and then M = 0) or, after 
a similarity transformation by a nonsingular element of M2(F), we may assume 

A ~ _ .  

Let B = (blj)t__l,j__2. Then 

(A,B) -- [ 

0 0 

1 0 1 "  

- b t 2  0 I • 
b t t - b 2 2  b12 J 
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Hence the eigenvalues of (A, B) are in F .  Conversely if the eigenvalues of M = (m~i) 
are in F ,  after a similarity transformation we may assume mr2 = 0. Then M =(A,B) 
where A = E21 and 

B =  [ m210 - m l t ]  0 

If  p # 2 ,  we also have M = ( A , B - 2  - t  m2112) and t r ace (B-2  - t  m2t I2 )=0 .  
This proves part (i) of each theorem. 

Let p = 2  and let M = ( A , B )  with trace A = t r a c e  B = 0 .  Then also 
M = (A - o~I,B - flI) with ~ equal to the (2,2) element of A, and i equal to 
the (2,2) element of B, and trace(A - ct/) = trace(B - ill) = 0. So in M = (A,B) 
we may assume the main diagonal is zero. Then 

a 2 t  0 b2! 0 

is scalar. On the other hand if M = mI2, then 

([0 01 [0 M = , 
1 0 0 0 

is the commutator of two nilpotent matrices. This proves Theorem 4(ii). 

To prove Theorem 4(iii) we may assume M is not scalar. In Theorem 3(ii) 
a nonzero M with trace zero cannot be scalar. So to complete these proofs let 
M = C(22 - a). Then M = (A, B) where 

[0 11 01 A - -  , B =  . 

a 0 0 0 

If  p ~ 2 then also M = ( A , B -  2-tI2)  and trace ( B -  2-~I2)--O. This finishes 
the proofs of Theorems 3 and 4. 

THEOREM 5. Let M eM, (F ) ,  n > 2, with trace M = O. Then M is an ar- 
bitrary word in commutators within Mn(F ). 

Thus, for example, M = ((At ,A2),((Aa,A4),As))  within Mn(F) if and only if 
trace M = 0. 

We now require additional terminology. Let L be the algebraic closure of 
field F .  The invariant factors of M e M,(F) are by definition the nonconstant 
polynomials on the main diagonal of the Smith canonical form of the polynomial 
matrix M - M.  Over F ,  each invariant factor of M can be split into a product 
of powers of irreducible polynomials over F .  We call these powers of irreducible 
polynomials over F the elementary divisors of M over F .  Over L, each elemen- 
tary divisor has the form ( 2 -  20) m. 
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THEOREM 6. Let M e M o ( F ) .  Then BeM~(F)  exists such that M = (M, B) 
i f  and only i f  each elementary divisor (2 - 2o) s of M over L has m = 0(mod p) 
whenever 20 ~ 0. I f  this condition is satisfied then it is always possible to choose 
B such thattraceB=O, except in onesituation: i f  p = 2  and i f  each elementary 
divisor of M over L has even degree, then for all choices of B we have trace 

B = n/2.  

An equivalent form of the condition of Theorem 6 is that each elementary 

divisor of  M over F not of  the form 2 m be a polynomial over F in 2 p. 

Proof. Suppose M = (M,B) .  After a similarity transformation by a non- 

singular element of  M~(L), we may suppose M = M~ -1- ... q- M, ,  where M i is 

ml-square, of  the form Mi = (2~) if mi = 1, or 

M s = 2jim, + C(2 m') 

if m~ > 1. (Jordan canonical form.) Here the 2i are not necessarily different. 

Partition B = (Biy) 1 < i,j < r, where Bii is ms-square. Then M = (M, B) implies 

Ms =(Mi,Bi t ) ,  1 < i < r. Hence traceMi = 0. This implies that ms =-0(modp) 
whenever 2~ ~ 0. Hence the condition of Theorem 6 is satisfied. Suppose now 

that p = 2 and that each mi is even. Fix i, and let Bii = (b~p). Then M s = (Ms, Bii) 
yields b~+1.~+1 - b~ = 1, for 1 < ct < m~. Hence b~+l.~+t = ~ + b11, and hence 
trace Bii= m i ( m i - 1 ) / 2 +  mib11 = mJ2 because m ~ = 0  in L. Therefore trace 

B = (ms + ' "  + m,)/2 = n/2. 
To complete the proof  of  Theorem 6, we suppose M ~ Mn(F) satisfies the con- 

dition of  Theorem 6. We have to find B~Mn(F) such that M = ( M , B ) ,  with 

traceB = 0, apart  from the exceptional case. Let ~b(2) e be an elementary divisor 

of  M over F ,  with tk(2) ~ ).. Let 20 be a root of  ~b(2) of  multiplicity v, where 
20 e L. Then ( 2 -  ;to) ve is an elementary divisor of  M over L. Hence either 

v = 0 (modp)  or e = 0 (modp) .  In either event ~b().) e must be a polynomial in 

2 ~. Now let g ( ; t ) = - a o - a 1 2  . . . . .  ar,_l)m-1 + ) m  be a polynomial in 2P: 
ay = 0 if j = 0 ( m o d p ) ,  and m = 0 (m odp) .  Let B1 = diag (1, 2, 3, . . . ,m) .  Then 
C(g(2)) = (C(g(2)), BI), since (j  + 1)aj = 0 = aj  i f j  ~ 0 (mod p),  and (j + 1)aj = ay 
i f j  ---- 0 ( m o d p ) .  Moreoyer, for odd p ,  traceB = m(m + 1)/2 = 0 becuse m = 0 
(modp) .  Next note that C(2 m) = (C(2m),BI - CtIr,) for any m and any ~ e F .  

I f  p is odd and m = 0 ( m o d p ) ,  put ~ = 0. Then traceB~ = 0. I f  m = 0 ( m o d p ) ,  

may be chosen from F so that t r a c e ( B t -  ~Im) achieves any desired value in 

F .  By taking direct sums, we can get M = (M,B)  within M,( F) ,  with traceB = 0 

in all cases but the indicated one. This  completes the proof  of  Theorem 6. 

THEOREM7. Let M e M ~ ( F ) , n  > 2 , ( n >  3 / f  p = 3 )  with trace M =O.  

Then 

(12) M = (((... ((A, C), C),-..), C), X) 
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for  certain A ,B,  X e M n ( F )  with t r a c e X = O ,  A nilpotent, and (for p ~ 2 ) ,  
trace C = O. 

Proof. By Theorem 1, M = (A ,X )  with A nilpotent and trace X = 0. By 
Theorem 6, A =  (A,C) ,  with t r a c e C = 0  for p # 2 .  By iteration we get (12). 
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