MATRICES WITH ZERO TRACE

BY

R. C. THOMPSON*

ABSTRACT

Let $M_n(F)$ denote the algebra of *n*-square matrices with elements in a field *F*. In this paper we show that if $M \in M_n(F)$ has zero trace then $M = AB - BA$ for certain A, $B \in M_n(F)$, with A nilpotent and trace $B = 0$, apart from some exceptional cases when $n = 2$ or 3. We also determine when $M = MB - BM$ for some $B \in M_n(F)$.

Let F be a field of characteristic p, p zero or prime. Let $M_n(F)$ denote the algebra of *n*-square matrices with elements in F. Let $(A, B) = AB - BA$ denote the commutator of matrices $A, B \in M_n(F)$. It is well known that trace $(A, B) = 0$. In 1936, Shoda [2] proved for $p = 0$ that if $M \in M_n(F)$ has zero trace then $M = (A, B)$ within $M_n(F)$. In 1957, Albert and Muckenhaupt [1] removed the restriction on p. It is of interest to ask whether in $M = (A, B)$ it is possible to choose $A, B \in M_n(F)$ so that trace $A = \text{trace } B = 0$. If $n \neq 0 \pmod{p}$ it is trivial to see that this is always possible. For let $\alpha = n^{-1}$ trace A, $\beta = n^{-1}$ trace B. Then $M = (A, B) = (A - \alpha I_n, B - \beta I_n)$ where I_n is the *n*-square identity matrix. Here $A - \alpha I_n$ and $B - \beta I_n$ each have zero trace. However, this argument fails if $n \equiv 0 \pmod{p}$. It is still easy to see that we can always choose A to have trace zero. For if trace $B = 0$ then $M = (-B, A)$ and $-B$ has zero trace. If trace $B \neq 0$, let $\gamma = -$ (trace A)(trace B)⁻¹. Then $M = (A + \gamma B, B)$ and here trace $(A + \gamma B) = 0$. No simple argument of this kind can show that it is always possible to choose both A and B to have zero trace, since we shall exhibit below an example where this is impossible. We are now ready to state our main result.

THEOREM 1. *If* $p \neq 3$ let $n > 2$ and if $p = 3$ let $n > 3$. Let $M \in M_n(F)$ have *zero trace. Then* $A, B \in M_n(F)$ exist such that $M = (A, B), A$ is nilpotent, and B *has zero trace.*

In Theorems 2, 3, 4, we supply a discussion of the cases $n = 2$ and $n = p = 3$. In Theorem 5 we obtain some consequences of Theorem 1. In Theorem 6 we determine when $M = (M, B)$ within $M_n(F)$.

We first require a Lemma that extends somewhat a Lemma proved in $[1]$.

Received December 22, 1965.

^{*} The preparation of this paper was supported in part by the U.S. Air Force under contract **AFOSR 698--65.**

LEMMA. Let $M = (m_{ij}) \in M_n(F)$, where $n \ge 2$. Suppose

(1)
$$
\sum_{i=1}^{n-\alpha} m_{i,i+\alpha} = 0, \quad 0 \leq \alpha \leq n-1.
$$

Let $K = (k_{ij}) \in M_n(F)$ where $k_{ij} = 0$ *if* $i \neq j+1$ *and* $k_{j+1,j} = 1$ *for* $1 \leq j < n$. *Then* $B \in M_n(F)$ exists such that $M = (K, B)$, with

(2)
$$
\operatorname{trace} B = - \sum_{i=1}^{n-1} (n-i) m_{i+1,i}.
$$

Proof. Let $B = (b_{ij})$ where $b_{i1} = 0$ for $1 \le i \le n$. The elements in the top row and in the first column of *KB* are all zero, and for $\alpha > 1$, $\beta > 1$, the element in position (α, β) of *KB* is $b_{\alpha-1,\beta}$. In - *BK* the last column is a zero column, and for $\beta < n$, the element in position (α, β) is $-b_{\alpha, \beta+1}$. Thus in column β of $KB-BK$, for $\beta < n$, we see new unknowns $b_{1,\beta+1}, b_{2,\beta+1}, \dots, b_{n,\beta+1}$ that do not appear in any column of $KB - BK$ to the left of column β . We may therefore choose B such that $M - (KB - BK)$ has all columns zero, except perhaps for column n . We now introduce some additional terminology. In an *n*-square matrix let diagonal α denote the diagonal of positions $(i, i + \alpha - 1), 1 \le i \le n - \alpha + 1$; $1 \le \alpha \le n$. In $KB - BK$ diagonal *n* has a single element, zero, and this is also true of M. For $1 \le \alpha \le n-1$, the sum down diagonal α in $KB - BK$ is

$$
\sum_{i=2}^{n-\alpha+1} b_{i-1,i+\alpha-1} - \sum_{i=1}^{n-\alpha} b_{i,i+\alpha} = 0.
$$

Hence the sum down diagonal α in $M - (K, B)$ is zero, $1 \leq \alpha \leq n$. Since $M - (K, B)$ can have nonzero elements only in column *n*, we must have $M - (K, B) = 0$. The elements $b_{11} = 0, b_{22}, \dots, b_{nn}$ in B satisfy the equations:

$$
m_{21} = -b_{22},
$$

\n
$$
m_{i,i-1} = b_{i-1,i-1} - b_{ii}, \quad 3 \le i \le n.
$$

Hence

(3)
$$
b_{il} = -(m_{21} + m_{32} + \cdots + m_{i,i-1}),
$$

for $2 \leq i \leq n$. From (3) it is easy to get (2).

We now give the proof of Theorem 1. First observe that, given $M = (m_{ij}) \in M_n(F)$ with trace $M = 0$, it suffices to prove Theorem 1 for some similarity transform SMS^{-1} by a nonsingular element S of $M_n(F)$. Next observe that if $D = diag(d_1, d_2, \dots, d_n) \in M_n(F)$ and is nonsingular, then the second diagonal of $D^{-1}MD$ is $d_1^{-1}m_{12}d_2, d_2^{-1}m_{23}d_3, \cdots, d_{n-1}^{-1}m_{n-1,n}d_n$. From this it follows that for appropriate nonzero $d_1, d_2, \dots, d_n \in F$, we can in $D^{-1}MD$ replace the nonzero elements on the second diagonal of M with any given nonzero values from F . Moreover, the positions in M which are zero still are zero in $D^{-1}MD$.

We let $C(p(\lambda))$ denote the companion matrix of polynomial $p(\lambda)$. We take

[March

Now let

(4)
$$
M = C(p_1(\lambda)) + C(p_2(\lambda)) + \cdots + C(p_r(\lambda)) \in M_n(F),
$$

where \ddagger denotes direct sum. We arrange matters so that

(5)
$$
p_{i+1}(\lambda)
$$
 divides $p_i(\lambda)$, $1 \leq i \leq r$,

(possibly $r = 1$). Let d be the number of ones on the second diagonal of M.

We now suppose $F \neq GF(2)$, the two element field. A separate proof will be given later when $F = GF(2)$.

We break our discussion into cases. First let degree $p_1(\lambda) \ge 4$ or degree $p_1(\lambda) = 3$, $r > 1$, degree $p_2(\lambda) > 1$. Then $d \ge 3$. Select $y \in F$ such that $y \ne 0$, $y \neq -(d-3)$. This is possible if F has at least three elements. Set $x = -y - (d-3)$. Then $x \neq 0$. Find a diagonal matrix $D \in M_n(F)$ so that the nonzero elements on the second diagonal of $D^{-1}MD$ are 1, x, y together with $d-3$ ones. Let

$$
D^{-1}MD = \left[\begin{array}{cc} 0 & u \\ v & M_1 \end{array} \right];
$$

where $M_1 \in M_{n-1}(F)$; $u = (1,0,0,...,0)$ is a row $(n-1)$ -tuple; v is a column $(n-1)$ -tuple for which the transpose, v^T , has the form $v^T=(0, v_3, v_4, \dots, v_n)$. Owing to the choice of x and y, the sum down the second diagonal of M_1 is zero. Hence, by the Lemma, $M_1 = (K_1, B_1)$ for a certain $(n-1)$ -square K_1 given by the lemma and for some $B_1 \in M_{n-1}(F)$. Set

(6)
$$
A = \begin{bmatrix} 0 & 0 \\ 0 & K_1 \end{bmatrix}, \quad B = \begin{bmatrix} -\text{tr} B_1 & u_1 \\ v_1 & B_1 \end{bmatrix}.
$$

Here $u_1 = (0, -1, 0, 0, \dots, 0), v_1^T = (v_3, v_4, \dots, v_n, 0)$. Then $-u_1K_1 = u, K_1v_1 = v$, and hence $D^{-1}MD = (A, B)$. Moreover A is nilpotent and trace $B = 0$.

We now have to examine the following cases: (i) degree $p_1(\lambda) = 3$, degree $p_2(\lambda) = \cdots = \text{degree } p_r(\lambda) = 1$ (perhaps $r = 1$); (ii) degree $p_1(\lambda) = 2$; (iii) degree $p_1(\lambda) = 1$.

Case (i). If $n \neq 0 \pmod{p}$, set $x = 0$. If $n \equiv 0 \pmod{p}$ but $p \neq 3$, let x be the solution in F of $3x = 2a_2$, where $p_1(\lambda) = \lambda^3 - a_3\lambda^2 - a_2\lambda - a_1$. Defer for a moment the possibility $p = 3$, $n \equiv 0 \pmod{3}$. Let

$$
\Delta = \left[\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ -x & 0 & 1 \end{array} \right] + I_{n-3}.
$$

Then the sum down the second diagonal of $\Delta M \Delta^{-1}$ is zero. We can apply the lemma to $\Delta M \Delta^{-1}$ to get $\Delta M \Delta^{-1} = (K, B)$. If $n \neq 0$ (mod p) we also have $\Delta M \Delta^{-1} = (K, B - \beta I_n)$. If we put $\beta = n^{-1}$ trace B then we have K nilpotent and trace $(B - \beta I_n) = 0$. If $n \equiv 0 \pmod{p}$ then the formula (2) together with the choice of x shows trace $B = 0$. This finishes case (i), except when $p = 3$ and $n \equiv 0 \pmod{3}$.

When $p = 3$ and $n \equiv 0 \pmod{3}$, the conditions in the theorem show that $n > 3$. Moreover (5) and degree $p_2(\lambda) = 1$ show that $M = C(p_1(\lambda)) + \gamma I_{n-3}$ for some $\gamma \in F$. But then M is similar to $M_1 = \gamma I_1 + C(p_1(\lambda)) + \gamma I_{n-4}$. Let $D = (1) + (-1)$ $+ I_{n-2}$. Then the sum down the second diagonal of $D^{-1}M_1D$ is zero. If we apply the Lemma to $D^{-1}M_1D$ we get $D^{-1}M_1D = (K, B)$. The formula (2) for trace B (use $n = 0$ in F) shows that trace $B = 0$. This completes case (i).

To handle the case in which degree $p_1(\lambda) = 2$, we let

$$
T_m = \begin{bmatrix} \alpha_1 & \beta_1 \\ \gamma_1 & \delta_1 \end{bmatrix} + \begin{bmatrix} \alpha_2 & \beta_2 \\ \gamma_2 & \delta_2 \end{bmatrix} + \cdots + \begin{bmatrix} \alpha_m & \beta_m \\ \gamma_m & \delta_m \end{bmatrix}.
$$

 T_m is 2*m*-square. We permute the rows and columns of T_m in the same way — this is a similarity transformation $P^{-1}T_mP$ of T_m by a permutation matrix P. We take the rows (and columns) of T_m in the order $1,3,5,\dots,2m-1,2,4,6,\dots,2m$. The result of this similarity is (in partitioned form)

$$
T'_{m} = P^{-1}T_{m}P = \begin{bmatrix} \text{diag}(\alpha_1, \alpha_2, \cdots, \alpha_m), & \text{diag}(\beta_1, \beta_2, \cdots, \beta_m) \\ \text{diag}(\gamma_1, \gamma_2, \cdots, \gamma_m), & \text{diag}(\delta_1, \delta_2, \cdots, \delta_m) \end{bmatrix}
$$

We now consider case (ii). If degree $p_1(\lambda) =$ degree $p_2(\lambda) = 2$, we may find a diagonal *D* such that the second diagonal of $D - MD$ sums to zero. But $D^{-1}MD = T_m$ or $D^{-1}MD = T_m + (\gamma)$ according as *n* is even or odd. So we find a nonsingular $Q \in M_n(F)$ such that $Q^{-1}MQ = T'_m$ or $Q^{-1}MQ = T'_m + (\gamma)$, as n is even or odd. By the Lemma, $Q^{-1}MQ = (K, B)$. Here (2) and $m > 1$ show that trace $B=0$. If degree $p_2(\lambda)=1$ then $p_2(\lambda)=\cdots=p_r(\lambda)=\lambda-\gamma$, so $p_1(\lambda)=2$ $(\lambda - \gamma)(\lambda - \delta)$, for certain $\gamma, \delta \in F$. But then M is similar to $M_1 = (\delta I_1 + \gamma I_{n-1}) + E_{n1}$ where E_{n_1} is *n*-square with all entries zero except for a single one at the $(n, 1)$ position. Since $n > 2$, the Lemma shows $M_1 = (K, B)$ where, by (2), trace $B = 0$ This completes case (ii).

In case (iii), M is diagonal and by the Lemma $M=(K,B)$ with trace $B=0$. This completes the proof of Theorem 1 when $F \neq GF(2)$.

Now assume $F = GF(2)$. Let M be given by (4) and (5). First suppose degree $p_1(\lambda) \geq 3$. Let $M = (m_{ij})$ and consider first the case in which the number of ones on the second diagonal of M is even. Let

$$
\delta = \sum_{i=1}^{n-1} m_{i+1,i}(n-i).
$$

Let $s = \text{degree } p_1(\lambda)$, so that $C(p_1(\lambda))$ is s-square. Let $E_{s,s-2}$ be s-square with all entries zero except for a single one at position $(s, s-2)$. Let $\Delta = I_s + \delta E_{s,s-2}$. Then

$$
M' = \Delta C(p_1(\lambda))\Delta^{-1} + C(p_2(\lambda)) + \cdots + C(p_r(\lambda))
$$

still has an even number of ones on the second diagonal. By the Lemma $M' = (K, B)$ and by (2), trace $B = \delta + (n - s + 1)\delta + (n - s + 2)\delta = 2(n - s + 2)\delta = 0$. Now let the number of ones on the second diagonal of M be odd. Let

$$
(7) \hspace{1cm} M = \left[\begin{array}{cc} 0 & u \\ v & M_1 \end{array} \right]
$$

where $u = (1,0,0,...,0)$, $v^T = (0, v_3,...,v_n)$, and M_1 has an even number of ones on the second diagonal. Then, by the Lemma, $M_1 = (K_1, B_1)$. Define *A*, *B* by (6). Then $M = (A, B), A$ is nilpotent, trace $B = 0$.

We may now assume that degree $p_1(\lambda)$ is two or one. If degree $p_1(\lambda)$ is one, then M is diagonal and the Lemma applies to M to give the result. So let degree $p_1(\lambda)$ be two. Then $p_1(\lambda)$ is one of λ^2 , $\lambda^2 + \lambda$, $\lambda^2 + 1$, $\lambda^2 + \lambda + 1$. If $p_1(\lambda) = \lambda^2$, then if there are an even number of ones on the second diagonal of M the Lemma immediately gives the result. If there are an odd number of ones on the second diagonal then M is given by (7) with $v = 0$. Then, by the Lemma, $M_1 = (K_1, B_1)$. $(M_1$ has at least two rows since M has at least three rows.) Let A, B be given by (6), with $v_1 = 0$. Then $M = (A, B)$ with A nilpotent and trace $B = 0$. If $p_1(\lambda)$ $= \lambda^2 + \lambda$ then (because of (5)), M is diagonable and the result is at hand. If $p_1(\lambda) = \lambda^2 + 1$ then M is similar to

$$
M_1 = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right] + \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right] + \cdots + \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right] + I_{n-2s},
$$

where there are s copies of

$$
\left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right].
$$

If $s > 1$, then M_1 has the form $M_1 = T_m$ or $M_1 = T_m + (1)$, according as n is even or odd, with $\beta_1 = \cdots = \beta_m = 0$. But then there exists Q such that $Q^{-1}M_1Q = T_m$ or $Q^{-1}MQ = T'_m + (1)$. By the Lemma, (2) and $m > 1$, $Q^{-1}M_1Q$ $=(K,B)$ with trace $B = 0$. If $s = 1, M$ is similar to $I_n + E_{n1}$, and by the Lemma, $I_n + E_{n1} = (K, B)$, with trace $B = 0$. We now have to consider the case $p_1(\lambda) = \lambda^2 + \lambda + 1$. Then, as $p_1(\lambda)$ is irreducible, $p_1(\lambda) = p_2(\lambda) = \cdots = p_r(\lambda)$ and trace $M = r$. Thus r is even. But then the sum down the second diagonal of M is zero. Moreover $M = T_r$. So M is similar to T' and by the Lemma $T'_r = (K, B)$ with trace $B = 0$. This completes the proof of Theorem 1.

THEOREM 2. *Let* $p = 3$ *. Let* $M \in M_3(F)$ *, with trace* $M = 0$ *. Then*: (i) $M = (A, B)$ *within* $M_3(F)$ *with* A nilpotent and trace $B = 0$ if and only if the characteristic *polynomial* $p(\lambda)$ *of* M has the form

(8)
$$
p(\lambda) = \lambda^3 - x^2 \lambda - \delta, \quad x, \delta, \in F;
$$

(ii) $M = (A, B)$ within $M_3(F)$ with A nilpotent; (iii) $M = (A, B)$ within $M_3(F)$ with trace $A = \text{trace } B = 0$.

Proof. Suppose $M = (A, B)$ within $M_3(F)$ with A nilpotent and trace $B = 0$. After a similarity transformation of $M = (A, B)$ by a nonsingular element of $M_3(F)$, we may assume A is one of the following three matrices:

(9)
$$
A=0
$$
; $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$; $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

If $A = 0$ then $M = 0$ and the characteristic polynomial of M has the form (8). From $M = (A, B)$ we get $M = (A, B - \beta I_3)$ and trace $(B - \beta I_3)$ = trace B for any $\beta \in F$. So in $M = (A, B)$ we may assume that the (3,3) element of B is zero. Hence let

(10)
$$
B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & -b_{11} & b_{23} \\ b_{31} & b_{32} & 0 \end{bmatrix}
$$

If we compute the characteristic polynomial of (A, B) where A is the second matrix (9) and B is given by (10), we get that the coefficient of λ is $-b_{23}^2$. If we compute the characteristic polyniomal of (A, B) where A is the third matrix (9) and B is given by (10), we get (using $2 = -1$ in F) that the coefficient of λ is $-(b_{12} + b_{23})^2$. Hence the characteristic polynomial of *(A, B)* has the form (8).

Suppose now the characteristic polynomial $p(\lambda)$ of M is given by (8). If M is nonderogatory then M is similar to $C(p(\lambda))$. But $C(p(\lambda)) = (U, V)$ where

$$
U = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ x & 1 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & -x & -1 \\ \delta & x^2 & x \\ -\delta x & -x^3 & -x^2 \end{bmatrix}
$$

Here U is nilpotent and V has trace zero. Suppose M is derogatory. Then $p(\lambda)$ must have a repeated root. Let γ , γ , α be the roots of $p(\lambda)$. Then $\gamma + \gamma + \alpha = 0$ and $\gamma + \gamma + \gamma = 0$ (since F has characteristic 3). Thus $\alpha = \gamma$. Hence $p(\lambda) = (\lambda - \gamma)^3$. As M is derogatory the minimal polynomial of M must be $\lambda - \gamma$ or $(\lambda - \gamma)^2$ and, of course, the minimal polynomial has coefficients in F. Thus $\gamma \in F$ and M is similar within $M_3(F)$ to

$$
(11) \qquad \qquad \begin{bmatrix} \gamma & 0 & 0 \\ 0 & \gamma & 0 \\ \epsilon & 0 & \gamma \end{bmatrix}
$$

where ε is 0 or 1. But by the Lemma, for M given by (11), $M = (K, B)$ where, using (2), trace $B = 0$. This proves (i).

To prove (ii), first let M be nonderogatory, similar to $C(g(\lambda))$ for some polynomial $g(\lambda)$. Choose diagonal *D* such that the second diagonal of $D^{-1}C(g(\lambda))D$ sums to zero. Then by the Lemma, $D^{-1}C(g(\lambda))D = (K, B)$ where K is nilpotent. If M is derogatory then the argument given above shows M is similar within $M_3(F)$ to the matrix (11). Hence always $M = (A, B)$ where A is nilpotent. And in fact we have proved that if M is derogatory then $M = (A, B)$ with A nilpotent and trace $B = 0$, within $M_3(F)$. To prove (iii) therefore we may assume $M = C(g(\lambda))$. Let $g(\lambda) = \lambda^3 - \alpha \lambda - \beta$. Let now $U = \text{diag}(0, 1, -1)$,

$$
V = \left[\begin{array}{rrr} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -\beta & \alpha & 0 \end{array} \right].
$$

Then $M = (U, V)$ and trace $U = \text{trace } V = 0$. (Use $2 = -1$ in F.) This completes the proof of Theorem 2.

THEOREM 3. Let $p \neq 2$ and let $M \in M_2(F)$ with trace $M = 0$. (i) If $M = (A, B)$ within $M_2(F)$ with A nilpotent then the eigenvalues of M are in F. If the eigen*values of M are in F then* $M = (A, B)$ *within* $M_2(F)$ *with* A nilpotent and trace $B=0$. (ii) $M = (A, B)$ within $M_2(F)$ with trace $A = \text{trace } B = 0$ can always *be achieved.*

THEOREM 4. Let $p = 2$ and let $M \in M_2(F)$ with trace $M = 0$. (i) $M = (A, B)$ within $M_2(F)$ with A nilpotent if and only if the eigenvalues of M are in F. (ii) If $M = (A, B)$ within $M_2(F)$ with trace $A = \text{trace } B = 0$ then M is scalar. *If M* is scalar then $M = (A, B)$ within $M_2(F)$ with both A, B nilpotent. (iii) $M = (A, B)$ within $M_2(F)$ with trace $A = 0$ can always be achieved.

Proofs. Let $M = (A, B)$ with A nilpotent. Either $A = 0$ (and then $M = 0$) or, after a similarity transformation by a nonsingular element of $M_2(F)$, we may assume

$$
A = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right].
$$

Let $B = (b_{ij})_{1 \le i,j \le 2}$. Then

$$
(A,B) = \begin{bmatrix} -b_{12} & 0 \\ b_{11} - b_{22} & b_{12} \end{bmatrix}.
$$

Hence the eigenvalues of (A, B) are in F. Conversely if the eigenvalues of $M = (m_{ij})$ are in F, after a similarity transformation we may assume $m_{12} = 0$. Then $M = (A, B)$ where $A = E_{21}$ and

$$
B=\left[\begin{array}{cc}m_{21}&-m_{11}\\0&0\end{array}\right]
$$

If $p \neq 2$, we also have $M = (A, B - 2^{-1} m_{21} I_2)$ and trace $(B - 2^{-1} m_{21} I_2) = 0$. This proves part (i) of each theorem.

Let $p=2$ and let $M=(A,B)$ with trace $A=$ trace $B=0$. Then also $M = (A - \alpha I, B - \beta I)$ with α equal to the (2,2) element of A, and β equal to the (2,2) element of B, and trace($A - \alpha I$) = trace($B - \beta I$) = 0. So in $M = (A, B)$ we may assume the main diagonal is zero. Then

$$
\left(\left[\begin{array}{cc}0 & a_{12} \\ a_{21} & 0\end{array}\right], \left[\begin{array}{cc}0 & b_{12} \\ b_{21} & 0\end{array}\right]\right)
$$

is scalar. On the other hand if $M = mI_2$, then

$$
M = \left(\left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & m \\ 0 & 0 \end{array} \right] \right)
$$

is the commutator of two nilpotent matrices. This proves Theorem 4(ii).

To prove Theorem $4(iii)$ we may assume M is not scalar. In Theorem $3(ii)$ a nonzero M with trace zero cannot be scalar. So to complete these proofs let $M = C(\lambda^2 - a)$. Then $M = (A, B)$ where

$$
A = \left[\begin{array}{cc} 0 & -1 \\ a & 0 \end{array} \right], \quad B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right].
$$

If $p \neq 2$ then also $M = (A, B - 2^{-1}I_2)$ and trace $(B - 2^{-1}I_2) = 0$. This finishes the proofs of Theorems 3 and 4.

THEOREM 5. Let $M \in M_n(F)$, $n > 2$, with trace $M = 0$. Then M is an ar*bitrary word in commutators within* $M_n(F)$.

Thus, for example, $M = ((A_1, A_2), ((A_3, A_4), A_5))$ within $M_n(F)$ if and only if trace $M = 0$.

We now require additional terminology. Let L be the algebraic closure of field F. The invariant factors of $M \in M_n(F)$ are by definition the nonconstant polynomials on the main diagonal of the Smith canonical form of the polynomial matrix $\lambda I - M$. Over F, each invariant factor of M can be split into a product of powers of irreducible polynomials over F . We call these powers of irreducible polynomials over F the elementary divisors of M over F. Over L , each elementary divisor has the form $(\lambda - \lambda o)^m$.

THEOREM 6. Let $M \in M_n(F)$. Then $B \in M_n(F)$ exists such that $M = (M, B)$ *if and only if each elementary divisor* $(\lambda - \lambda_0)^m$ *of M over L has* $m \equiv 0 \pmod{p}$ *whenever* $\lambda_0 \neq 0$. If this condition is satisfied then it is always possible to choose *B* such that trace $B=0$, except in one situation: if $p=2$ and if each elementary *divisor of M over L has even degree, then for all choices of B we have* trace $B = n/2$.

An equivalent form of the condition of Theorem 6 is that each elementary divisor of M over F not of the form λ^m be a polynomial over F in λ^p .

Proof. Suppose $M = (M, B)$. After a similarity transformation by a nonsingular element of $M_n(L)$, we may suppose $M = M_1 + \cdots + M_r$, where M_i is m_i -square, of the form $M_i = (\lambda_i)$ if $m_i = 1$, or

$$
M_i = \lambda_i I_{m_i} + C(\lambda^{m_i})
$$

if $m_i > 1$. (Jordan canonical form.) Here the λ_i are not necessarily different. Partition $B = (B_{ij})$ $1 \le i, j \le r$, where B_{ii} is m_i -square. Then $M = (M, B)$ implies $M_i = (M_i, B_{ii}), 1 \le i \le r$. Hence trace $M_i = 0$. This implies that $m_i \equiv 0 \pmod{p}$ whenever $\lambda_i \neq 0$. Hence the condition of Theorem 6 is satisfied. Suppose now that $p = 2$ and that each m_i is even. Fix i, and let $B_{ii} = (b_{\alpha\beta})$. Then $M_i = (M_i, B_{ii})$ yields $b_{\alpha+1,\alpha+1} - b_{\alpha\alpha} = 1$, for $1 \leq \alpha < m_i$. Hence $b_{\alpha+1,\alpha+1} = \alpha + b_{11}$, and hence trace $B_{ii}= m_i(m_i-1)/2 + m_ib_{11} = m_i/2$ because $m_i=0$ in L. Therefore trace $B = (m_i + \cdots + m_r)/2 = n/2$.

To complete the proof of Theorem 6, we suppose $M \in M_n(F)$ satisfies the condition of Theorem 6. We have to find $B \in M_n(F)$ such that $M = (M, B)$, with trace $B = 0$, apart from the exceptional case. Let $\phi(\lambda)$ ^e be an elementary divisor of M over F, with $\phi(\lambda) \neq \lambda$. Let λ_0 be a root of $\phi(\lambda)$ of multiplicity v, where $\lambda_0 \in L$. Then $(\lambda - \lambda_0)^{ve}$ is an elementary divisor of M over L. Hence either $v \equiv 0 \pmod{p}$ or $e \equiv 0 \pmod{p}$. In either event $\phi(\lambda)^e$ must be a polynomial in λ^p . Now let $g(\lambda) = -a_0 - a_1\lambda - \cdots - a_{m-1}\lambda^{m-1} + \lambda^m$ be a polynomial in λ^p : $a_j = 0$ if $j \equiv 0 \pmod{p}$, and $m \equiv 0 \pmod{p}$. Let $B_1 = \text{diag}(1, 2, 3, \dots, m)$. Then $C(g(\lambda)) = (C(g(\lambda)), B_1)$, since $(j + 1)a_j = 0 = a_j$ if $j \neq 0 \pmod{p}$, and $(j + 1)a_j = a_j$ if $j \equiv 0 \pmod{p}$. Moreover, for odd p, trace $B = m(m + 1)/2 = 0$ becuse $m \equiv 0$ (mod p). Next note that $C(\lambda^m) = (C(\lambda^m), B_1 - \alpha I_m)$ for any m and any $\alpha \in F$. If p is odd and $m \equiv 0 \pmod{p}$, put $\alpha = 0$. Then trace $B_1 = 0$. If $m \equiv 0 \pmod{p}$, α may be chosen from F so that trace($B_1 - \alpha I_m$) achieves any desired value in F. By taking direct sums, we can get $M = (M, B)$ within $M_m(F)$, with trace $B = 0$ in all cases but the indicated one. This completes the proof of Theorem 6.

THEOREM 7. Let $M \in M_n(F)$, $n > 2$, $(n > 3$ if $p = 3)$ with trace $M = 0$. *Then*

(12)
$$
M = (((\cdots((A,C),C),\cdots),C),X)
$$

for certain $A, B, X \in M_n(F)$ *with trace* $X = 0$, *A nilpotent, and (for p* $\neq 2$ *),* $trace C = 0$.

Proof. By Theorem 1, $M = (A, X)$ with A nilpotent and trace $X = 0$. By Theorem 6, $A = (A, C)$, with trace $C = 0$ for $p \neq 2$. By iteration we get (12).

REFERENCES

I. A.A. Albert and B. Muckenhaupt, *On matrices of trace zero,* Mich. Math. J. 4 (1957), 1-3.

2. K. Shoda, *Einige Siitze fiber Matrizen,* Jap. J. Math. 13 (1936), 361-365.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA